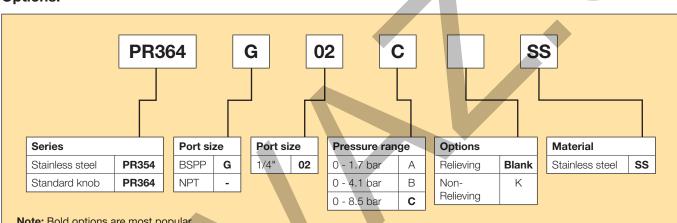
PR354, PR364 Regulator – Miniature

PR354


PR364

Symbol

- Stainless steel construction handles most corrosive environments
- · Large diaphragm to valve area ratio for precise regulation and high flow capacity
- Meets NACE specifications MR-01-75/ISO 15156
- High flow: 1/4" 5.75 dm³/s§

Options:

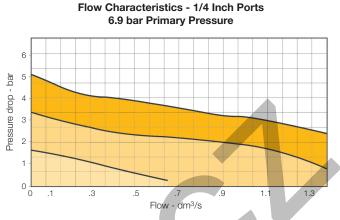
Note: Bold options are most popular

Port size	Series	Description	Order code	Max bar	Height mm	Width mm	Depth mm
G1/4	PR364	BSPP - Standard knob	PR364G02CSS	20.7	78	40	40
G1/4	PR364	NPT - Standard knob	PR364-02CSS	20.7	78	40	40
G1/4	PR354	BSPP - All metal	PR354G02CSS	20.7	64	40	40
G1/4	PR354	NPT - All metal	PR354-02CSS	20.7	64	40	40

 $^{\$}$ dm³/s = 7 bar inlet pressure with 5.5 bar set pressure and 1 bar pressure drop.

Marning

Product rupture can cause serious injury. Do not connect regulator to bottled gas. Do not exceed maximum primary pressure rating.


PDE2504TCUK Stainless Steel FRLs

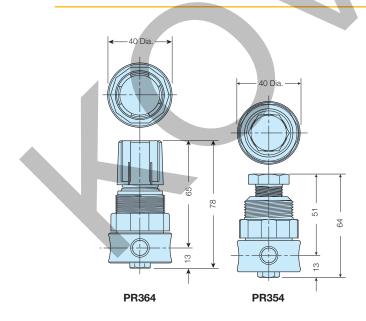
Specifications

Gauge port		G1/4
Operation	Flourocarbon diaphragm	
Port threads		G1/4
Operating temperature	PR354	-18°C to 82°C
	PR364	-18°C to 66°C
Max supply pressure	PR354	0 to 20.7 bar
	PR364	0 to 20.7 bar
Weight		230 g

Note: Air must be dry enough to avoid ice formation at temperatures below 2°C.

Flow Charts

CAUTION:

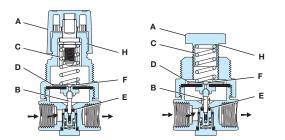

REGULATOR PRESSURE ADJUSTMENT -

The working range of knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design. For best performance, regulated pressure should always be set by increasing the pressure up to the desired setting.

Materials of Construction

Adjustment mechanism / Springs	316 Stainless steel
Adjustment knob (PR354)	316 Stainless steel
Adjustment knob (PR364)	Polypropylene
Body	316 Stainless steel
Bonnet (PR354)	316 Stainless steel
Bonnet (PR364)	Acetal
Bottom plug	316 Stainless steel
Poppet	316 Stainless steel
Seals	Flourocarbon

Dimensions (mm)



Note: 32mm dia. hole required for panel mounting.

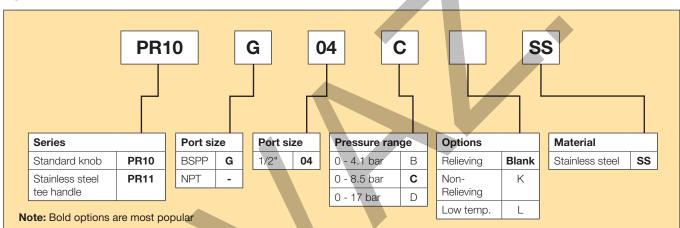
Accessories

	R354 Bonnet Ki	t	0.3 micron	CKR354YSS
	R364 Bonnet Ki	t	Knob included	CKR364YSS
	Gauge - 0 to 10 bar		BSPP	M1/4G40S-10
			NPT	K4520N14160SS
	Panel Mount Bracket (Stainless)			161X57-SS
	Panel Mount Nu	ıt	Stainless	R05X51SS
			Plastic	R05X51-P
_	Pipe Nipple		1/4" NPT 316 Stainless Steel	616Y28-SS
			1/4" BSPT 316 Stainless Steel	AC-2SS
	Service Kit		Relieving	RKR364YSS
			Non-Relieving	RKR364KYSS

Operation

With the adjusting knob (A) turned fully counter-clockwise (no spring load), and pressure supplied to the regulator inlet port, the valve poppet assembly (B) is closed. Turning the adjusting knob clockwise applies a load to control spring (C). This load causes the diaphragm (D) and the valve poppet assembly (B) to move downward allowing flow across the seat area (E) created between the poppet assembly and the seat. Pressure in the downstream line is sensed below the diaphragm (D) and offsets the load of spring (C). As downstream pressure rises, poppet assembly (B) and diaphragm (D) move upward until the area (E) is closed and the load of the spring (C) and pressure under diaphragm (D) are in balance. A reduced outlet pressure has now been obtained, depending on spring load. Creating a demand downstream, such as opening a valve, results in a reduced pressure under the diaphragm (D). The load of control spring (C) now causes the poppet assembly to move downward opening seat area (E) allowing air to flow to meet the downstream demand. The flow of downstream air is metered by the amount of opening (E). Should downstream pressure exceed the desired regulated pressure, the excess pressure will cause the diaphragm (D) to move upward against control spring (C), open vent hole (F), and vent the excess pressure to atmosphere through the hole in the bonnet (H). (This occurs in the relieving type regulator only.)

PR10, PR11 Regulator - Standard


PR11

Symbol

- Stainless steel construction handles most corrosive environments
- Large daphragm to valve area ratio for precise regulation and high flow capacity
- Meets NACE specifications MR-01-75/ISO 15156
- Low temperature version available
- High flow: 1/2" 37.75 dm³/s§

Options:

Port size	Series	Description	Order code	Max bar	Height mm	Width mm	Depth mm
G1/2	PR10	BSPP - Standard knob	PR10G04CSS	20.7	126	62	60
G1/2	PR10	NPT - Standard knob	PR10-04CSS	20.7	126	62	60
G1/2	PR11	BSPP - Stainless steel tee handle	PR11G04CSS	20.7	154	62	60
G1/2	PR11	NPT - Stainless steel tee handle	PR11-04CSS	20.7	154	62	60

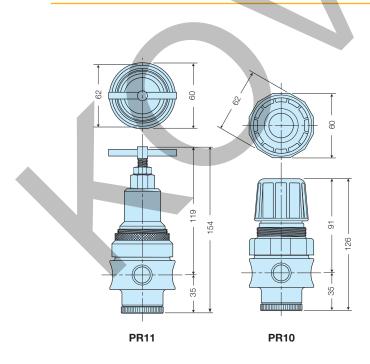
 $^{\$}$ dm³/s = 7 bar inlet pressure with 5.5 bar set pressure and 1 bar pressure drop.

Marning

Product rupture can cause serious injury. Do not connect regulator to bottled gas. Do not exceed maximum primary pressure rating.

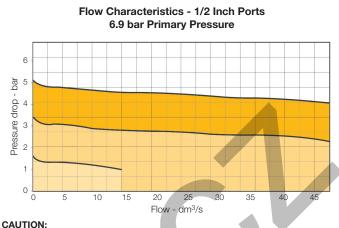
Specifications

Gauge port		G1/4
Operation		Flourocarbon diaphragm
Port threads		G1/2
Operating temperature	PR10	-18°C to 66°C
	PR11	-18°C to 82°C
Option "L" minimum ope	erating temperature	-40°C
Max supply pressure	PR10	0 to 20.7 bar
	PR11	0 to 20.7 bar
Weight		810 g


Note: Air must be dry enough to avoid ice formation at temperatures below 2°C.

Note: "Low Temperature" option is intended for applications where the ambient temperature may be down to -40° C/F. Air supply must be free of moisture to prevent ice formation and malfunction of units. These units contain EPDM seals. Make sure any oils in the airstream are compatible.

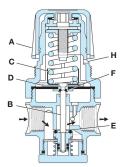
Materials of Construction


316 Stainless steel
316 Stainless steel
316 Stainless steel
Acetal
316 Stainless steel
316 Stainless steel
Flourocarbon

Dimensions (mm)

Note: 44mm dia. hole required for panel mounting.

Flow Charts


CAUTION: REGULATOR PRESSURE ADJUSTMENT –

The working range of knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design. For best performance, regulated pressure should always be set by increasing the pressure up to the desired setting.

Accessories

R10 Bonnet Kit		Knob included	CKR10YSS
R11 Bonnet Kit			CKR11YSS
Gauge - 0 to 10) bar	BSPP	M1/4G40S-10
		NPT	K4520N14160SS
Panel Mount Bracket		: (Stainless)	R10Y57-SS
Panel Mount Nut		Stainless	R10X51SS
		Plastic	R10X51-P
Pipe Nipple		1/2" NPT 316 Stainless Steel	616A28-SS
		1/2" BSPT 316 Stainless Steel	AC-4SS
Service Kit		Relieving	RKR10YSS
		Non-Relieving	RKR10KYSS

Operation

With the adjusting knob (A) turned fully counter-clockwise (no spring load), and pressure supplied to the regulator inlet port, the valve poppet assembly (B) is closed. Turning the adjusting knob clockwise applies a load to control spring (C). This load causes the diaphragm (D) and the valve poppet assembly (B) to move downward allowing flow across the seat area (E) created between the poppet assembly and the seat. Pressure in the downstream line is sensed below the diaphragm (D) and offsets the load of spring (C). As downstream pressure rises, poppet assembly (B) and diaphragm (D) move upward until the area (E) is closed and the load of the spring (C) and pressure under diaphragm (D) are in balance. A reduced outlet pressure has now been obtained, depending on spring load. Creating a demand downstream, such as opening a valve, results in a reduced pressure under the diaphragm (D). The load of control spring (C) now causes the poppet assembly to move downward opening seat area (E) allowing air to flow to meet the downstream demand. The flow of downstream air is metered by the amount of opening (E).

Should downstream pressure exceed the desired regulated pressure, the excess pressure will cause the diaphragm (D) to move upward against control spring (C), open vent hole (F), and vent the excess pressure to atmosphere through the hole in the bonnet (H). (This occurs in the relieving type regulator only.)

