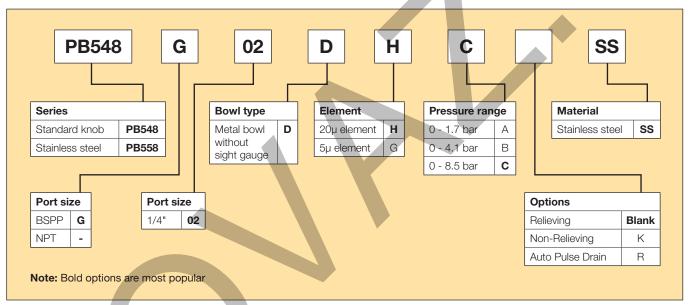

PB548, PB558 Filter / Regulator - Miniature

Symbols



- Stainless steel construction handles most corrosive environments
- Large diaphragm to valve area ratio for precise regulation and high flow capacity
- Meets NACE specifications MR-01-75/ISO 15156.
- High flow: $1/4" 5.75 \text{ dm}^3/\text{s}^{\S}$
- 1/8" female threaded drain

Options:

Port size	Series	Description	Order code	Max bar	Height mm	Width mm	Depth mm
G1/4	PB548	BSPP - Standard knob - Manual drain	PB548G02DHCSS	20.7	147	40	40
G1/4	PB548	BSPP - Standard knob - Auto drain	PB548G02DHCRSS	12.0	147	40	40
G1/4	PB548	NPT - Standard knob - Manual drain	PB548-02DHCSS	20.7	147	40	40
G1/4	PB548	NPT - Standard knob - Auto drain	PB548-02DHCRSS	12.0	147	40	40
G1/4	PB558	BSPP - All metal - Manual drain	PB558G02DHCSS	20.7	78	40	40
G1/4	PB558	BSPP - All metal - Auto drain	PB558G02DHCRSS	12.0	78	40	40
G1/4	PB558	NPT - All metal - Manual drain	PB558-02DHCSS	20.7	78	40	40
G1/4	PB558	NPT - All metal - Auto drain	PB558-02DHCRSS	12.0	78	40	40

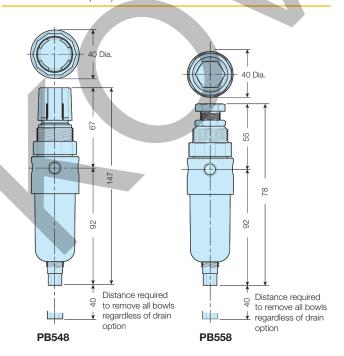
 $[\]$ dm³/s = 7 bar inlet pressure with 5.5 bar set pressure and 1 bar pressure drop.

Marning Marning

Product rupture can cause serious injury.
Do not connect regulator to bottled gas.
Do not exceed maximum primary pressure rating.

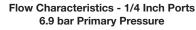
Stainless Steel FRLs

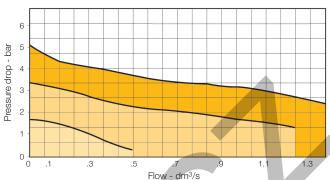
Specifications


Bowl capacity		29 cm ³
Filter rating		20 micron
Gauge port		G1/4
Operation		Flourocarbon diaphragm
Port threads		G1/4
Operating temperature	PB548	-18°C to 82°C
	PB558	-18°C to 66°C
	Auto Pulse Drain	0°C to 66°C
Max supply pressure	PB548	0 to 20.7 bar
	PB558	0 to 20.7 bar
	Auto Pulse Drain	0 to 12 bar
Sump capacity		12 cm ³
Weight		270 g

Note: Air must be dry enough to avoid ice formation at temperatures below 2°C.

Materials of Construction

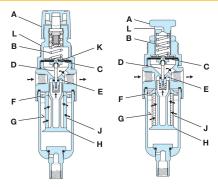

Adjustment mechanism / Springs	316 Stainless steel
Adjustment knob (PB548)	Polypropylene
Adjustment knob (PB558)	316 Stainless Steel
Body	316 Stainless steel
Bonnet (PB548)	Acetal
Bonnet (PB558)	316 Stainless Steel
Bottom plug	316 Stainless steel
Poppet	316 Stainless steel
Seals	Flourocarbon


Dimensions (mm)

Note: 32mm dia. hole required for panel mounting.

Flow Charts

CAUTION:

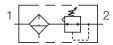

REGULATOR PRESSURE ADJUSTMENT -

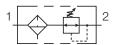
The working range of knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design. For best performance, regulated pressure should always be set by increasing the pressure up to the desired setting.

Accessories

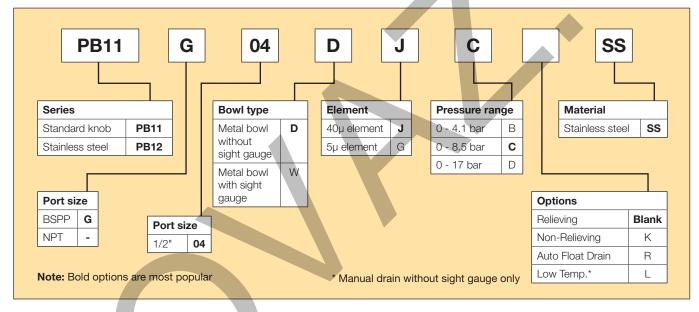
Filter Element Kits	Particulate (5 micron)	EK504VY
	Particulate (20 micron)	EK504Y
Gauge - 0 to 10 bar	BSPP	M1/4G40S-10
	NPT	K4520N14160SS
Drain Kits	Automatic Pulse Drain	RK504SY-SS
Manual Twist Drain	Small (Old)	SA600Y7-1SS
	Large (New)	SAP05481
Panel Mount Bracket	(Stainless)	161X57-SS
Panel Mount Nut	Stainless	R05X51SS
	Plastic	R05X51-P
Pipe Nipple	1/4" NPT 316 Stainless Steel	616Y28-SS
	1/4" BSPT 316 Stainless Steel	AC-2SS
Service Kit	Relieving	RK549YSS
	Non-Relieving	RK548YSS

Operation


Turning the adjusting knob clockwise applies a load tocontrol spring (B) which forces diaphragm (C) and valve poppet assembly (D) to move downward allowing filtered air to flow through the seat area (E) created between the poppet assembly and the seat. "First stage filtration". Air pressure supplied to the inlet port is directed through deflector plate (F) causing a swirling centrifugal action forcing liquids and coarse particles to the inner bowl wall (G) and down below the lower baffle (H) to the quiet zone. After liquids and large particles are removed in the first stage of filtration "second stage filtration" occurs as air flows through element (J) where smaller particles are filtered out and retained. The air flow now passes through seat area (E) to the outlet port of the unit. Pressure in the downstream line is sensed below the diaphragm (C) and offsets the load of spring (B). When downstream pressure reaches the set-point, poppet valve assembly (D) and diaphragm (C) move upward closing seat area (E). Should downstream pressure exceed the desired regulated pressure, the excess pressure will cause the diaphragm (C) to move upward opening vent hole (K) venting the excess pressure to atmosphere through the hole in the bonnet (L). (This occurs in the standard relieving type filter/regulators only.)



PB11, PB12 Filter / Regulator - Standard


Symbols

- Stainless steel construction handles most corrosive environments
- Large diaphragm to valve area ratio for precise regulation and high flow capacity
- Meets NACE specifications MR-01-75/ISO-15156
- Low temperature version available
- High flow: 1/2" 34 dm³/s§
- 1/8" female threaded drain

Options:

Port size	Series	Description	Order code	Max bar	Height mm	Width mm	Depth mm
G1/2	PB11	BSPP - Standard knob - Manual drain	PB11G04DJCSS	20.7	218	64	60
G1/2	PB11	BSPP - Standard knob - Auto drain	PB11G04DJCRSS	12.0	218	64	60
G1/2	PB11	NPT - Standard knob - Manual drain	PB11-04DJCSS	20.7	218	64	60
G1/2	PB11	NPT - Standard knob - Auto drain	PB11-04DJCRSS	12.0	218	64	60
G1/2	PB12	BSPP - Tee handle - Manual drain	PB12G04DJCSS	20.7	246	64	60
G1/2	PB12	BSPP - Tee handle - Auto drain	PB12G04DJCRSS	12.0	246	64	60
G1/2	PB12	NPT - Tee handle - Manual drain	PB12-04DJCSS	20.7	246	64	60
G1/2	PB12	NPT - Tee handle - Auto drain	PB12-04DJCRSS	12.0	246	64	60

 $[$] dm^3/s = 7$ bar inlet pressure with 5.5 bar set pressure and 1 bar pressure drop.

Product rupture can cause serious injury.

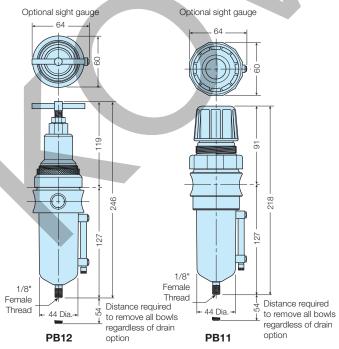
Do not connect regulator to bottled gas.

Do not exceed maximum primary pressure rating.

Stainless Steel FRLs

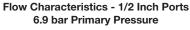
Specifications

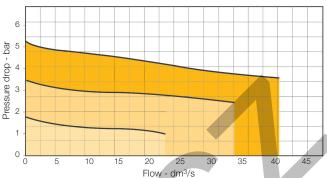
Bowl capacity		118 cm ³
Filter rating		40 micron
Gauge port		G1/4
Operation	Flouroc	arbon diaphragm
Port threads		G1/2
Operating temperature	PB11 (Metal bowl D or W)	-18°C to 66°C
	PB12 (Metal bowl D)	-18°C to 82°C
	PB12 (Metal bowl W)	-18°C to 66°C
	Auto Float Drain	0°C to 66°C
Option "L" minimum ope	erating temperature	-40°C
Max supply pressure	PB11 (Metal bowl D or W)	0 to 20.7 bar
	PB12 (Metal bowl D)	0 to 20.7 bar
	PB12 (Metal bowl W)	0 to 20.7 bar
	Auto Float Drain	0 to 12 bar
Sump capacity		50 cm ³
Weight		1090 g


 $\textbf{Note:} \ \text{Air must be dry enough to avoid ice formation at temperatures below 2°C.}$

Note: "Low Temperature" option is intended for applications where the ambient temperature may be down to -40° C/F. Air supply must be free of moisture to prevent ice formation and malfunction of units. These units contain EPDM seals. Make sure any oils in the airstream are compatible.

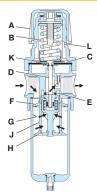
Materials of Construction


Adjustment mechanism / Springs	316 Stainless steel
Body	316 Stainless steel
Bonnet / Knob (PB11)	Acetal
Bonnet / Tee handle (PB12)	316 Stainless steel
Bottom plug	316 Stainless steel
Poppet	316 Stainless steel
Seals	Flourocarbon
Sight gauge	Isoplast


Dimensions (mm)

Note: 44mm dia. hole required for panel mounting.

Flow Charts


CAUTION: REGULATOR PRESSURE ADJUSTMENT -

The working range of knob adjustment is designed to permit outlet pressures within their full range. Pressure adjustment beyond this range is also possible because the knob is not a limiting device. This is a common characteristic of most industrial regulators, and limiting devices may be obtained only by special design. For best performance, regulated pressure should always be set by increasing the pressure up to the desired setting.

Accessories

Filter Element Kits	Particulate (40 micron)	EKF10Y
	Particulate (5 micron)	EKF10VY
Gauge - 0 to 10 bar	BSPP	M1/4G40S-10
	NPT	K4520N14160SS
Drain Kits	Automatic Float Drain	SA10MDSS
Manual Twist Drain	Small (Old)	SA600Y7-1SS
	Large (New)	SAP05481
Panel Mount Bracket	(Stainless)	R10Y57-SS
Panel Mount Nut	Stainless	R10X51SS
	Plastic	R10X51-P
Pipe Nipple	1/2" NPT 316 Stainless Steel	616A28-SS
	1/2" BSPT 316 Stainless Steel	AC-4SS
Service Kit	Relieving	RKR10YSS
	Non-Relieving	RKR10KYSS

Operation

Turning the adjusting knob clockwise applies a load to control spring (B) which forces diaphragm (C) and valve poppet assembly (D) to move downward allowing filtered air to flow through the seat area (E) created between the poppet assembly and the seat. "First stage filtration". Air pressure supplied to the inlet port is directed through deflector plate (F) causing a swirling centrifugal action forcing liquids and coarse particles to the inner bowl wall (G) and down below the lower baffle (H) to the quiet zone. After liquids and large particles are removed in the first stage of filtration "second stage filtration" occurs as air flows through element (J) where smaller particles are filtered out and retained. The air flow now passes through seat area (E) to the outlet port of the unit. Pressure in the downstream line is sensed below the diaphragm (C) and offsets the load of spring (B). When downstream pressure reaches the set-point, poppet valve assembly (D) and diaphragm (C) move upward closing seat area (E). Should downstream pressure exceed the desired regulated pressure, the excess pressure will cause the diaphragm (C) to move upward opening vent hole (K) venting the excess pressure to atmosphere through the hole in the bonnet (L). (This occurs in the standard relieving type filter/regulators only.)

